From Our Blog

Asphalt vs. Post-Tensioned Concrete Tennis Courts

Asphalt tennis courts may be the most commonly constructed hard-surfaced courts in the industry today. However, due to inconsistencies with the quality of asphalt in recent years, there is an increased interest in post-tensioned concrete courts. When considering the construction of a tennis facility, it is important to understand the basic differences between asphalt and post-tensioned concrete courts.


Asphalt Tennis Courts:
  • Installation typically includes two courses of asphalt (wearing and binder) over a crushed stone base. The depth of the pavement system is based on recommendations resulting from a geotechnical investigation/report.
  • Bituminous (asphalt) pavement is flexible and tends to be more affected by freeze/thaw cycles. Over time and under exposure to the elements, this often leads to surface and/or structural cracks.
  • The design mix has an impact on the pavement’s lifespan. It may be beneficial to avoid incorporating recycled asphalt shingles and recycled asphalt pavement into the asphalt mix. The performance grade of the asphalt binder used in the design mix should be specifically tailored to the climate / environmental conditions of the proposed project’s geographic location.
  • Asphalt paving may be more economical to install; however, there are higher maintenance costs throughout the life of the court due to repairing cracks and related re-application of the tennis surfacing system.

Post-Tensioned Concrete Tennis Courts:
  • Post-tensioned (PT) concrete construction involves installation of a structural concrete slab over a prepared base. The concrete is reinforced with cables tensioned after the concrete is installed. The design of the pavement system is based on recommendations from a geotechnical investigation/report, as well as design recommendations from a registered structural engineer.
  • PT construction is a rigid pavement system, and when properly installed, has a greater resistance to cracking. Cracks that may occur are typically hairline rather than the more significant cracks commonly seen in asphalt courts.
  • During design, it is important to take into consideration a clear space around the perimeter of the courts to allow for the tensioning of the cables.
  • PT construct is more expensive to install than asphalt; however, lower maintenance costs over the life of the court are typically experienced. Post-tensioned courts do not require the extent of crack repairing (and related tennis system resurfacing) typically associated with asphalt courts.
  • PT systems have longer service life than asphalt courts.

Budgetary constraints are often a primary factor in selecting either asphalt or post-tensioned concrete. While asphalt systems have a lower initial cost, higher maintenance costs and an overall shorter lifespan is expected. Post-tensioned courts are significantly more expensive to install; however, they require less maintenance over the life of the court, and have a longer overall life expectancy.

Forensic Nondestructive Test Methods for Concrete and Masonry Structures

Non-Destructive Testing: Soundings (Chain Drag)

When evaluating existing structures, forensic test methods are often used to aid in the investigative process. Information regarding the material properties, conditions, and subsurface conditions is paramount in a forensic evaluation to have a clear understanding of the existing conditions. Destructive testing is typically the preferred method to determine existing conditions as it allows for “hands-on” access to the subsurface environment. Where possible, masonry and concrete samples are collected during destructive exploration for laboratory testing. The materials can be tested in a controlled environment to determine their performance characteristics. Often; for a variety of reasons, such as safety, cost, or access; non-destructive methods are used to evaluate existing structures. This is often the case in masonry and concrete evaluations where destructive methods may not be feasible due to their disruptive nature to the facade or building occupants.


The following are examples of non-destructive test methods that can be used to gather information on the in-situ properties of concrete and masonry structures during a forensic evaluation:


  • Non-Destructive Testing: Soundings (Hammer Tap)

    Sounding: used to determine surface delaminations in concrete and certain types of stone. The surface of the concrete or stone is struck lightly with a hammer and the resulting sound is interpreted by the engineer. High pitched sounds typically indicate sound/stable conditions, while lower pitched sounds can indicate delaminations.


  • Impact Echo Testing: used to determine flaws in masonry and concrete using a spherical impactor and measuring the stress propagation through the speed of the sound wave. The test can also determine slab thickness accurately.


  • Impulse Radar Testing: used to detect delaminations in masonry or concrete structures or debonding between masonry wythes in multi-wythe walls. As the wave travels through each wall material, the different components have different dielectric constant, including air. The energy reflected is measured and the depth to the defect can be determined. This is also used to determine steel reinforcing depth in concrete structures.


  • ASTM E 1186, Standard Practices for Air Leakage Site Detection in Building Enclosures and Air Barrier Systems

    Rebound Hammer Testing: used to determine strength of concrete using surface hardness. The hammer is dropped on the surface on which the test is being performed and the rebound is measured; a correlation can be interpreted from rebound to the material’s compressive strength.


  • Infrared Testing: used to determine areas of spalls and voids. A thermographic image is used to show areas with inconsistent materials that affect the thermal properties, resulting in a differing temperature from the surrounding area.


Each of the above tests is used in conjunction with visual observations, and performed and interpreted by a qualified professional. No one test can be considered the sole indicator of material condition. Multiple test methods in several locations are required to substantiate results.  As with most exterior building enclosure evaluations, differing building constructions and conditions will necessitate the appropriate approaches and testing.

Re-Roofing Natatoriums: A Case Study

Re-Roofing Natatoriums: A Case Study

Natatoriums are notoriously difficult facilities to design and construct as there are many important factors to consider that, if overlooked, can result in premature failure of the building systems and/or hazardous conditions for building occupants. With respect to the building enclosure, important design and installation practices will help provide properly performing and functioning assemblies. Several important considerations include:

  • Providing a continuous, properly installed roof vapor retarder that connects and seals to the air barriers in the wall assemblies.
  • Designing for, and installing continuous insulation in multiple layers to reduce the potential for condensation
  • Limiting thermal bridging that typically occurs from structural components or fasteners within the systems
  • Limiting penetrations through the enclosure and/or providing proper flashing details when penetrations cannot be avoided

When these design considerations are disregarded, it can result in premature failure of the enclosure assemblies, as evidenced at a recent natatorium project in Montgomery County, MD. The facility, which was constructed in the early 1990s, is divided into five separate and distinct areas, two of which house indoor swimming areas. The roof assembly over the swimming areas was constructed as follows (from top to bottom):

  • 24-gauge standing seam, pre-painted galvanized steel roof panels
  • 30 lb. roof felt, fastened to the composite insulation board
  • Composite insulation board (7/16” OSB factory-laminated to 2-1/2” polyisocyanurate insulation)
  • Vapor retarder/barrier
  • 1-1/4 exterior plywood sheathing
  • Steel deck

These two roof areas experienced severe degradation of the metal roof panels with surface rust noted throughout and large areas of panel corrosion with exposed felt underlayment. The level of corrosion observed in the metal roof panels +/-25 years after construction was unusual and indicated there may be issues with the vapor barrier. The original construction documents followed basic natatorium design principles, which detailed the vapor barrier extending vertically onto rising walls and curbs, following destructive testing, and connecting to the wall air barrier at transitions. However, following destructive testing, it does not appear that these requirements were implemented during construction.

To reduce the possibility of moisture migration into the new roof system, the new vapor barrier was designed to be installed over the existing roof that encapsulated the wood blocking at the ridges, rakes, and eaves and tied into existing curbs and the exterior wall brick masonry. The insulation thickness was increased and installed in multiple layers to meet current code requirements: 30 lb. roof felt was specified under the new standing seam metal roof panels.

During demolition of the existing roof assembly, it was observed that the existing vapor barrier was not continuous at edge transitions, penetrations, or at eight large skylight curb assemblies. The vapor barrier terminated approximately 1/4” short of all rising walls and curbs, providing a path for moisture migration from the interior. Although we could not visually verify if the roof vapor barrier connected the wall air barrier at the ridges, rakes, and eaves, evidence of moisture staining on the existing vapor barrier and degradation of the insulation at these edge conditions indicated these connections were incomplete.

Consistent migration of chemical- and moisture-laden air from the building’s interior due to an improperly flashed vapor barrier was likely a significant contributing factor for the premature failure of the roof assembly. This project serves as an example of the importance of designing and installing a complete vapor to air barrier assembly.

Reflecting on the Value of Cool Roofing

White roofs versus dark roofs? When choosing a surfacing or membrane color, there are several things to consider. White membranes, also referred to as cool roofing, use highly reflective and emissive properties generally associated with lighter colors to reflect solar radiation and, as such, emit heat to reduce roof surface temperatures. Darker membranes absorb heat from the sun, and radiate this heat to both the surrounding atmosphere and the building interior below. Since we can’t turn our roof black in the winter to absorb the heat, and white in the summer to reflect it, how do we know which roof would be better suited for our building’s overall efficiency?

During summer months, when building interiors are typically conditioned (i.e., the “cooling season”), the advantages of a cool roof in terms of cost effectiveness, are obvious – a highly reflective roof reduces heat gain by reflecting solar radiation. Reducing heat gain into the roof system will help reduce cooling costs. This translates to a clear advantage of white roofing in southern climates where the cooling season is most prominent. In summer months, studies have shown that cool roofs can reduce surface temperatures by more than 25%. Currently, ASHRAE Standard 90.1 contains “cool roof” solar reflectance and thermal emittance provisions for Climate Zones 1-3, the warmest climate zones in the United States, but no such provisions are set for Zones 4-8 (see ASHRAE Climate Zone Map below).

North of Climate Zone 3, the debate as to the value of cool roofing continues. Some industry groups and leaders are of the opinion that dark roofing is more efficient in areas where the heating season outlasts the cooling season (due to the potential for an increase in winter heating costs produced by cool roofing). There are several, perhaps less obvious, factors that appear to limit or nullify the advantages of dark roofing in colder climates and winter months:

• Snowfall – Snow can significantly affect the thermal performance of the roof surface, not only through coverage, but also through its insulating properties. Roofs in northern climates can spend much of the winter covered in snow, which prevents the solar radiation absorptivity of a darker roof surface from being useful. Additionally, depending on its depth, fallen snow on roofs can act as an additional layer of insulation, making the roof surface color even less of a factor. As a side note, less snow melt can impact snow load, and this should be taken into consideration during the design phase.

• Solar Angle –The angle of the sun is lower during winter months and the days are shorter, particularly in norther climates. There is less total solar radiation available to be absorbed by the roof, making the benefits of a dark roof less pronounced during the winter.

• Shorter/Cloudier Days – The number of cloudy days historically increases in most northern climates during winter months. The increase in cloud cover reduces the sun’s ability to heat the roof, again diminishing the advantages of dark roofing.

• Energy Resource Costs – In most cases, heating resources like natural gas or oil are less expensive than cooling resources such as electricity, so the added winter heating costs for a cool roof make less of an impact than the added summer cooling costs for a dark roof. Additionally, most heating occurs in early morning or late evening hours, when solar radiation on the roof is low.

There are, of course, situations where cool roofing may not be a preferable option. Buildings in extremely cold climates or certain buildings where cooling is seldom (if ever) used may not draw sufficient benefits from reduced cooling costs. Cool roofing may also be at a higher risk of developing condensation beneath the membrane in consistently cold climates if the roof is inadequately insulated or ventilated.

If you have a building in a southern climate, cool roofing may reduce energy costs. Even in northern climates, a cool roof might be a worthwhile consideration.

Cooperative Purchasing

Cooperative purchasing is a contracting option for public agencies, such as educational facilities (K-12 and higher ed.) and non-profits, to purchase equipment, products and related services without going through the time-consuming public solicitation process. Contracting agencies (Coops) such as the National Joint Powers Alliance (NJPA) conduct a competitive solicitation process of vendors (for equipment, products, etc.) and once awarded, the vendor is contracted with the Coop at set unit prices. The Coop has already conducted the required competitive bidding process. Once a member of a Coop, schools or other public agencies can purchase from vendors at the contracted unit price, without having to put in the time/effort to conduct their own public bid process.

Cooperative Purchasing can be used by schools and towns to purchase synthetic turf and infill (materials) for athletic field installations, including running track and tennis courts. Municipalities are permitted to request a quote directly from the various coop contracted vendors for their specific products. Using this purchasing mechanism, public sector clients may save money as the costs for various products are often less than when publicly bid. This also allows the municipality to purchase the exact product they want (i.e. turf and infill) rather than settle for a product that may meet a more general public bid specification.

Gale recently assisted a local Regional High School with the purchase of materials through NJPA, the process consisted of the following:

1. Establish membership with a Coop, at no cost.

2. Review Coop’s Contract Directories to view the list of awarded vendors available. (example: NJPA)

3. Contact the vendor directly, letting them know you are interested in using their Coop contract. (Vendors will then provide you with a quote in accordance with their Coop contract and their pre-established pricing).

9th Edition of MA State Building Code

It was recently announced that the 9th Edition of the Massachusetts State Build Code will be released in August or September 2017. A concurrency period will be provided in which a building can be permitted under either the current 8th or the new 9th edition. This concurrency period will end January 1, 2018 and all projects permitted in 2018 will be required to comply with the 9th edition.

The new, 9th edition code is based on modified versions of the following 2015 codes as published by the International Code Council (ICC):

  • The International Building Code (IBC)
  • International Residential Code (IRC)
  • International Existing Building Code (IEBC)
  • International Mechanical Code (IMC)
  • International Energy Conservation Code (IECC)
  • International Swimming Pool and Spa Code (ISPSC)
  • Portions of the International Fire Code (IFC)

The 9th edition brings changes to the building enclosure as well, including but not limited to the following:

  • Updated code requirements for location of vapor retarders
  • Vegetated roof has been defined
  • Load requirements for snow drift load
  • Dead load and design requirements for solar panels and support framing
  • Provisions for addressing impact loads from elements supporting facade access equipment
  • Seismic requirements for ballasted PV solar panels

For more information, click here.

Please feel free to contact Gale if you have questions about how the 9th edition may affect your building enclosure!

FAA DBE Program Resources

The Federal Aviation Administration (FAA) requires all recipients of federal financial assistance exceeding $250,000 in a federal fiscal year (FFY) to create and implement three-year Disadvantaged Business Enterprise (DBE) Programs. These DBE Programs are intended to promote and enforce equal opportunity for disadvantaged firms that compete for airport contracts.

FAA New England Region DBE Programs (FFY 2018-2020) are due on August 1, 2017 and require data collection and analysis to develop goals for DBE participation for upcoming projects. DBE participation goals are calculated based on three major components:

  1. Available businesses in an airport’s market area for each required area of work (e.g., environmental consultants, paving contractors, or electrical contractors)
  2. Available DBE businesses in an airport’s market area for each required area of work
  3. Historical DBE participation data (airport-specific)

The FAA requires approval of DBE Program goals prior to granting federal funds. Below are some helpful resources for FAA DBE Program development:

Sample DBE Program: A template, created by the FAA, to provide grant recipients with all necessary program provisions. 

Contact List: A listing of FAA DBE Compliance Specialists, by region. These individuals can help answer questions regarding DBE Program development. 

United States Census County Business Patterns (CBP): A database that allows users to gather information about available businesses in a particular state or county. 

County Business Patterns User Guide: Guidance for data collection using the CBP database. 

MA DBE Directory: A listing of disadvantaged businesses registered in the state of Massachusetts. 

ME DBE Directory: A listing of disadvantaged businesses registered in the state of Maine.

NH DBE Directory: A listing of disadvantaged businesses registered in the state of New Hampshire. 

The Advantages of Using Waterborne Structural Spray for Tracks

Running tracks are a paved-in-place system. The base, comprised of a single-compound polyurethane binder and machine-installed SBR rubber granules, is what gives a track its “cushion.” After this step is complete, the track is finished with multiple spray applications of 100% solid pigmented polyurethane and EPDM granules, or an environmentally friendly water-based structural spray.

There are several environmental advantages to using a waterborne structural spray instead of a urethane based spray:

  • Low to zero VOCs
  • Made without isocyanates
  • Reduced chemical exposure
  • Reduced odors
  • Faster dry times – two sprays in one day
  • Less prep work and issues with clean up
  • When replacing the track, the reduction of harmful chemicals allows for simpler disposal due to reducing hazardous and environmental liabilities

Many tracks are constructed on land adjacent to environmentally sensitive areas. Choosing a waterborne structural spray for these conditions is appropriate to enhance environmental protection and alleviate concerns about potential chemical exposure.

During a recent Gale track project (photos shown to the right), the town chose to use a waterborne structural spray because of  the track’s adjacency to wetlands, a perennial stream, and close proximity to residential neighborhoods.

Interior Issues Caused By Exterior (EIFS) Cladding

What is EIFS?

EIFS is an acronym for Exterior Insulation Finish System. EIFS is a non-load bearing, exterior wall cladding system that consists of continuous insulation board attached either adhesively, mechanically, or in combination, to exterior sheathing, which is covered with a reinforced base coat and textured protective finish coat. There are two types of EIFS: the Face-Sealed System and the Drained System. Face-Sealed EIFS is a sealant dependent “barrier system” that is fundamentally flawed due to its reliance on perfect workmanship and material performance to provide a 100% moisture barrier. The Drained System, predominantly used today, includes provision for drainage of moisture via flashings and open vertical planes between the exterior sheathing and the insulation board. This system helps to manage moisture that may enter the wall cavity. EIFS was first developed in Europe and was introduced to the U.S. as an energy-saving building system on commercial buildings in the late 1970s and residential homes in the early 1980s. The EIFS Drained System was introduced in the late 1990s.

Issues with Face-Sealed EIFS

Commercial and residential buildings constructed between the late 1970s and the early 1990s that have Face-Sealed EIFS cladding could potentially have one or more undesirable conditions caused by bulk water intrusion combined with 
inadequate wall drainage. Water trapped within this wall system can cause further issues when combined with HVAC deficiencies. Defects can include microbial growth, staining of interior finishes, reduced structural integrity (corrosion and/or decay of load bearing walls), insect infestations, increased interior humidity, and cracking of the interior and exterior finishes. Although these issues are often readily apparent, decay and corrosion can be concealed and may result in latent structural damages.

Deferred Maintenance

The noted defects are typically exacerbated at building walls that are not periodically maintained. One of most common causes of moisture intrusion through Face-Sealed EIFS are deteriorated sealant joints and window systems. It should be noted that the service life of most windows is less than 40 years, and the service life of most sealants is less than 15 years. This implies that buildings constructed with Face-Sealed EIFS likely have windows that are approaching the end of their serviceable life, and that replacement of exterior wall sealant joints should have occurred at least twice during that time.

The Consequences

s (microbial growth), and the loss of revenue associated with the construction and abatement (which may include temporary relocation of tenants). If your Face-sealed EIFS clad building has deteriorated exterior sealants (typically crazed/cracked appearance) and/or interior staining/mildew odor, an assessment by an industrial hygienist, building enclosure consultant, structural engineer, and possibly a mechanical engineer are recommended. The assessments should be followed by a structured plan to make necessary repairs and replacements, and periodically (typically every 5 to 7 years) evaluate and maintain the exterior wall and fenestrations.

Deferred maintenance of sealant joints and windows in Face-Sealed EIFS can result in significant construction costs to repair or replace the EIFS, interior finishes and windows, the abatement of hazardous material.

Considerations When Using Flush Wall Panels in Screen Wall Applications

To maintain the aesthetics of a new roof design, building owners often choose to conceal their rooftop mechanical equipment with screen walls. Screen walls are considered “architectural walls,” and are typically constructed using steel frames and finished with metal wall panels.

While aesthetics are an important consideration for screen wall design, building owners and designers should not overlook wind loading while selecting metal wall panels for their screen wall. Metal wall panels are often secured to a solid substrate, such as a masonry wall; however, wall panels attached to exposed steel framing (vertical posts and horizontal channels) in screen wall applications typically leave the back side of the panels open and exposed to wind. Wind can create a negative pressure acting outwards from behind the panel. This wind load pressure can cause panels to bow, allowing the connection between panels to disengage. When selecting metal wall panels for a rooftop screen wall, consider the following parameters:

  • Panel Width: Increasing the width of a metal wall panel increases the surface area on which wind loads are applied. Selecting narrower metal wall panels helps to mitigate the effects of negative wind loading pressure.
  • Panel Material: Many manufacturers offer metal wall panels in a variety of materials including aluminum and steel. Thicker gauge material with higher tensile strength will reduce the tendency for panels to deform under negative pressure.
  • Panel Profile: Metal wall panels come in a variety of profiles: panels typically consist of two engagement legs on either side of the panel that interlock to form a connection between adjacent panels. Panels with longer engagement legs will provide for a deeper connection between adjacent panels, limiting the possibility of this connection to be compromised under wind loads.

Installing metal wall panels on a rooftop screen wall can improve building aesthetics; however, without proper consideration of wind loads, these panels are susceptible to damage. Selecting metal screen wall panels of an appropriate width, material, and profile to withstand wind loading pressure will help the panels to remain secure throughout the life of the roof.

Organic Infill at Local High School

In today’s health-conscious and eco-friendly world, the popularity of organic products is on the rise. This interest and concern has carried over to Athletic Facilities Planning. Gale recently completed a project for a school opting to use organic infill for two new synthetic turf fields. The school was focused on the fields’ proximity to wetlands, as well as the health of their students and the perceived concerns associated with SBR crumb rubber. The school was provided with a summary of alternative infill options and Geofill, a coconut/cork and sand mix, was selected.

The School District felt this decision was appropriate after weighing the pros and cons of the infill options and costs. Below are some considerations for organic alternate infills:


  • Organic and environmentally friendly.
  • Retain water, which provides an evaporative cooling effect as compared to fields with a crumb rubber infill. This can be an advantage, especially in warm climate locations.
  • Provide athletes with a natural feel under foot.
  • Shock pads provide a consistent G-max (acceptable impact level).


  • The cost is higher compared to traditional crumb rubber field (40% increase for infill and shock pad).
  • Can require more maintenance than crumb rubber.
  • Requires replenishing every 2-3 years.
  • The material is not recyclable for infill use, but can be used for landscaping beds.
  • May require watering since it can become dusty during a dry summer.

Metal-Over-Metal Retrofit Roofing Using Prefabricated Sub-Purlins

At one time or another, every building owner will deal with the process of replacing their roof. While this is a necessity for the proper function of a building, it can often be costly, disruptive (smelly and noisy), and messy. If your building currently has a metal roof that needs replacement, one option to consider is a metal roof overlay system.

The most common metal roof overlay system includes prefabricated sub-purlins, which are z-shaped structural members that are factory cut to fit snugly over a variety of metal panel profiles. The purlins, typically 16-gauge galvanized steel, are attached through the existing metal roof panels to the building’s structural frame to provide the appropriate base to which the new metal panels are secured.

The benefits of a metal-over-metal retrofit roof system include:

  • Reduced costs and disruption associated with demolition, and provides better protection for the building’s interior finishes from unpredictable weather versus removing the existing metal roof.
  • Minimized requirements for the contractor to gain interior access, which reduces interruption of occupant day-to-day activities.
  • Increased energy efficiency. The sub-purlins can be formed to customized depths to allow installation of additional insulation.
  • Reduced labor costs from faster project completion.
  • Ability to easily upgrade an existing exposed fastener (face fastened) metal roof to a more watertight standing seam (concealed clip) roof.

There are many factors to consider before choosing a sub-purlin retrofit system. The existing building structure should be analyzed to verify that it can safely support the additional weight of an overlay. Furthermore, applicable code requirements should be researched to determine if the new overlay system will be compliant. Lastly, the overall condition of the existing metal roof system and insulation assembly should be evaluated. If the existing panels are visible from the interior and are aesthetically unpleasing, or if the need for continuous insulation is driving your roof project, an overlay may not be the right option.

Planning Your Athletic Facilities Project: How Long Does it Really Take?

When planning an athletic facility project, it’s important to keep in mind the overall project timeline. Prior to bulldozers and excavators moving dirt, an engineering process that can take months to complete must occur. While each project is different, below is a typical project process and timeline:

FAA Offering Rebate for Avionics

The FAA is offering a $500 rebate to general aviation aircraft owners to aid in the cost of Automatic Dependent Surveillance – Broadcast Out (ADS-B Out) equipment. Starting in 2020, this equipment will be mandatory for flying in most controlled airspace.

The ADS-B Out requirement is part of a transition from ground radar and navigational aids to precise tracking using satellite signals. The equipment periodically broadcasts an aircraft’s position, velocity, and other information including dimensions. Displays utilizing ADS-B Out are capable of showing other aircraft in the sky or on the ground at an airport. It can also provide pilots with information on hazardous weather, terrain, and temporary flight restrictions. Only certain features are required by the ADS-B Out 2020 mandate. Title 14 CFR §91.227 defines the equipment requirements.

The FAA plans to issue up to 20,000 rebates on a first-come, first-serve basis for up to one year. This incentive is only for registered, fixed-wing, single-engine piston aircraft. Software upgrades to existing equipment are not covered by the rebate. For additional information on rebate eligibility, equipment installation, and to reserve and claim a rebate, visit A full description of the airspace covered by the mandate can be found in Title 14 CFR §91.225.

Can Your Facilities Weather the Storm?

The scientists at the National Oceanic and Atmospheric Administration’s (NOAA) National Hurricane Center have predicted that the 2016 hurricane season will be more active than in the last three years. We have learned from experience that hurricanes can be quite unpredictable, causing widespread damage to many vulnerable areas, and are not limited strictly to coastal regions. Depending on the ultimate path and intensity of a storm when it makes landfall, hurricane‐force winds can cause loss of power, flooding, and damaged or destroyed roofs, doors, windows and wall systems. This could lead to substantial interior and or structural damages to buildings. These storm-related building failures can cause unanticipated shutdowns of educational, institutional and commercial sectors within a community.

The following preventive measures may help avoid or reduce catastrophic harm to your building’s components and systems, and improve the chances of your facilities maintaining functionality in the event of a hurricane:

Reliable Backup Power & Resources. Stockpile resources, such as generators, batteries (alkaline, rechargeable, car, solar voltaic, etc.), a reliable supply of fuel, water, flashlights, radios, portable televisions, power inverters, roof repair materials, removable shutters, tarps and any other essential items in a secure location where they can be quickly retrieved after the storm.

Protect the Roof. Inspect the entire roof thoroughly before storm season. Secure areas of displaced membrane or perimeter flashings by installing additional anchors, especially in older buildings that have not been designed to meet current wind code requirements. Install additional fasteners or screw anchors with washers on the face of the edge metal or coping face flanges, with the highest priority being at corner zones and about 24‐in. on‐center in the perimeters. Add mechanical fasteners to membranes in vulnerable perimeter areas where adhesion of the roof system is suspect.

Mitigate Stormwater and Flooding Concerns. Remove debris or loose materials that could clog drains, gutters, downspouts and scuppers to maintain free flow of water.  Relocate or reposition critical materials, such as scientific experiments, records and archives, key computers, etc., away from areas that may be prone to flooding.

Secure Roof Appurtenances and Accessories. Basically, anything that is anchored to a roof needs to stay there. Reinforce or secure air‐conditioning equipment and fans to the roof using additional screw fasteners and/or straps. Add metal or even nylon straps at strategic locations to help reinforce the ducts and provide supplemental anchorage down to supports.

Safeguard the Building Enclosure. Minimize potential damage from windborne debris and to the building’s exterior by using storm shutters (preferred method), plywood panels, steel deck material or lightweight corrugated plastic materials to protect windows, doors and louvers (wall openings). Window films applied to the inside of the glass can provide a level of protection, but its use should be limited to upper floors, as films are generally not tested for large projectile resistance. Secure or bring in light-weight objects, such as garbage cans, tools or furnishings that may become projectiles during a storm.

Implement a Facility Survival Plan. Creating a plan before the storm will help you to quickly mobilize and make necessary repairs to restore operations as soon as possible. Below are some important steps to consider:

  • Establish a base of operations from which to coordinate recovery and repair efforts.
  • Develop a contingency plan that focuses on readiness, including manpower, equipment and materials needed immediately after the storm.
  • Organize a recovery team by assigning repair tasks to specific individuals or contractors prior to the emergency. Include team member phone numbers and email, as well as team staging and assembly locations. For each roof or wall assembly, specify materials, protocols and personnel responsible to address problems. Use a chart or calendar to establish a timeline for required repairs. A repair manual will also be helpful and allow for consistent quality standards during the recovery operation.  Roof and wall repairs should be completed by a contractor knowledgeable about proper flashing techniques and materials.
  • Develop a primary and backup communication protocol with post-event procedures for on-call constructors, consultants or other entities to expedite emergency assessments, evaluations and repairs; to temporarily relocate assets or functions; and for potential transportation needs.

Critters Causing Chaos: How Bats Can Impact the Building Enclosure

Did you know that a half-inch space is all a bat needs to crawl into your roof? A space the size of a bottle cap is all it takes for them to begin causing havoc. The presence of bats in a building can affect the replacement process and add costly repairs in an existing building.

Some species of bats are endangered and protected, while others are just disruptive. It is important to consider how to resolve the problem of evicting them from the habitats they create in your

structure, and to understand the laws in place to protect

them, and what measures must be taken to relocate them.

Bats are an important part of our ecosystem. They consume a vast amount of insects including some that damage agricultural crops, they
pollinate valuable plants, and their waste can be a rich natural fertilizer;

however, bat guano in your building is not pleasant and can be environmentally hazardous.

One major issue bats can cause is staining in the area they enter and exit a facility. This is due to waste accumulation, and can ruin building insulation, sheet rock or particle board, cause an unbearable smell and in extreme cases may cause structural damage.

Tall structures are ideal locations for bats because higher elevations are less likely to receive maintenance. Facility owners seldom notice small cracks or gaps on the facades of higher buildings, but that half inch crack in a mortar joint 30 or 40 feet off the ground can become a highway for bats to enter a structure. Once they gain access to your space, getting them out is a costly and a time consuming endeavor and depending on the location, it can interfere with day-to-day operations.

Because some bat species are protected, a professional should be utilized in the removal process in order to relocate them to a safer area that does not cause harm to you or the environment. Usually this is done through a process called bat exclusion, which lets them fly out, but not back in. This process is performed at night when bats leave to find food. A professional will need to determine the proper enclosure required repairs to prevent them from coming back and assist in the preparation of a maintenance program.

Inspecting your building and knowing what to look for is a crucial step in maintenance and avoiding this problem. At a minimum, become aware of what natural habitats are present in your surroundings. This will help determine what kind of inspections are required. Some important points to consider are:

• Training maintenance personnel on the warning signs of bats

• Incorporating a systematic documentation process to know what to look for on a daily, weekly or monthly basis

• Communicate any bat findings with professionals trained in the relocation process

Once bats or other critters find their way into your building, many issues can arise. Not only do you need to get them out, but the clean-up can be tedious. Next time you spot that small “insignificant opening” in your building, don’t ignore it, you never know what’s inside or what species wants to make it the entrance to their new home!

Take some time to view the links below for more information:

Bat Conservation International

Professional Wildlife Removal

Lasers and Airplanes: What is the Law?

Many involved with aviation are aware that pointing lasers at in-flight aircrafts can be a serious, if not deadly, issue. The FAA and the justice system have been taking serious action against violators of FAA policies banning the practice of striking aircraft with lasers. Violators are given heavy jail sentences upon conviction (a 26 year old man in California was sentenced to 14 years in federal prison), and the FBI is currently offering a $10,000 reward for information leading to the capture of a recent violator.

Click here for additional information on this serious subject. This FAA page includes articles detailing laser-related arrests and convictions, an FBI video on the dangers of pointing lasers at aircraft, and a consumer safety alert on purchasing lasers.

Measuring Roof Snow Loads

New England winters, as evidenced by 2010/2011 and 2015, can deposit large amounts of snow on roof areas and potentially overload the roof structural system. Snow tends to accumulate against rising walls and parapets, rooftop units and roof wells, and can cause large concentrated loads on roof areas. Original building structural drawings often express the snow load that the roof was designed for in pounds per square foot (psf). This doesn’t directly correlate to a depth of snow. The allowable depth of snow depends both on the design load psf and the unit weight of the snow in pounds per cubic foot (pcf). The Massachusetts State Building Code (MSBC) and associated references provide an equation for the unit weight of snow based on the design ground snow load; however, the actual conditions may vary depending on the weather.

We suggest the following procedure for measuring roof snow loads:

1.  Measure the depth of snow at various locations around the roof area. Pay particular attention to accumulated snow against rising walls or mechanical units where snow tends to drift. We recommend using a plastic shovel to dig down to the roof system to avoid damage.

Large amounts of snow combined with wind can cause snow to drift against rising walls leading to heavy concentrated load on portions of roof framing.

2.  Using a known volume such as a stove pipe of known diameter and height, obtain a sample of snow in its existing condition. A stove pipe can be used to slide through the snow and then cap the bottom of the pipe to collect the snow.

3.  Measure the weight of the sample snow (remember to subtract the weight of the stove pipe or similar apparatus).

We use a stove pipe with a known diameter and length to measure the density of snow at various locations.

4.  The unit weight of the snow will be determined by dividing the weight of the snow by the known volume. We suggest performing the measurements at multiple locations on the roof, including where the snow appears to be consistent depth and at drifted snow locations as the unit weight may vary.

At a 2015 review: snow could be seen overhanging the flat roof several feet.

5.  Once the unit weight is obtained, divide the allowable uniform load (obtained from the original drawings) by the unit weight to provide an allowable snow depth. For example, if the design or allowable snow load is 30 psf and the unit weight of snow is 20 pcf, the allowable snow depth will be 30/20 = 1’ 6” of snow.

6.  While performing the measurements, be aware of any ice, slush or water below the snow since these are generally heavier than the snow. These layers should be weighed separately and added to the snow load.

Beware of potential ice build-up underneath snow, particularly at the eave of a pitched roof.

Soil Acidity and Athletic Fields: Why Should We Be Concerned and What Can We Do to Fix It?

An important first step in completing an athletic campus needs assessment and master plan is the sampling and agronomic testing of fields’ root zone materials to evaluate soil structure, organic content, micronutrient levels and pH. Testing is a key factor in developing the proper maintenance or rehabilitation strategy for improved turf growth.

Over the years, Gale has observed a significant trend in our testing results. Athletic fields, particularly in northern New England, tend to be more acidic. These fields must be maintained to hold up under substantial use, requiring considerable planning and maintenance to sustain their soil quality. Over the past two years, we have documented and recovered soil samples with an average pH of 5.2, and with individual values below 5.0. This significant level of acidity results from the gradual breakdown of indigenous plant materials in the soil, and is exacerbated by the influence of acid rain.

Why should we be concerned with this?

According to the Massachusetts Natural Resources Collaborations (Mass NRC), the pH of the soil directly affects the amount of nutrients available to grass cultivars. Cultivars are varieties of plants produced in cultivation by selective breeding. They can ingest the wrong nutrients when pH levels are not optimal. Preferred nutrients are most accessible when the pH is in the range of 6.0 to 7.0. With average pH ranges consistently below 5.5, regardless of the fertilizer regimen, turf grass is often starved. For example, Kentucky Blue Grass blends, often selected for athletic turf grass based on their restorative capacity due to their rhizome generation, cannot prorogate as intended and fields break down under normal use.

How can we fix the issue?

Lime! The UMASS Department of Agronomy provides specific lime application strategies for each soil sample tested. While there are multiple considerations for crafting a pH adjustment strategy, low pH root zones with values less than 5.4 generally call for lime application rates of up to 150 pounds of limestone per 1,000 SF, applied at a rate of no more than 50 pounds per spring or fall season. For a typical 90,000 SF multi-purpose rectangular field, this amounts to 4,500 pounds per season for three consecutive seasons. In summary, test the soil and be prepared to apply lime for a happier, healthier natural turf field.

Performance Considerations for Designing Glazed Aluminum Curtain Walls

Glazed aluminum curtain walls are engineered and tested more than any other type of building enclosure system. Unlike most fenestration and cladding assemblies, curtain walls are an assembly of parts designed and detailed to achieve project specific performance and design requirements. Since they are performance driven, the designer needs to define performance criteria as it relates to evaluating, engineering, testing, production, construction, and commissioning of the curtain wall. There are a number of environmental, maintenance, performance, and security/safety factors that need to be considered when selecting a system. These factors include, but are not limited to, determining structural loads/movements resulting from wind and seismic forces, maintenance access equipment and operations, temperature change, and external/internal loads imposed on the supporting building structure. Performance considerations include thermal value, air and water infiltration, condensation resistance, and acoustic separation. Based on the building location and usage, safety considerations may include fire resistance, airborne missile protection, blast protection, and falling ice protection.

There are several types of curtain walls available from which the designer can choose among. Most systems fall into two classifications: stick frame and unitized. Stick frame systems are usually delivered to the site in parts and built in place. Some systems can be partially built off site and delivered to the site. These “ladder frames” are typically spliced together, leaving a joint in the interior face of the mullion. On the other hand, a unitized system is completely assembled in a factory, delivered to the site, and hung on the building. A unitized system can speed installation and avoid problems associated with field installation and weather but can come at a higher cost and need specific attention to air and water-tight integrity at panel to panel connections. In order to select a system, the designer must also identify if it is inside or outside glazed and the thickness of the glazing, as each system will have different limitations. This selection must consider the building as a whole. For instance, you would not want to select an interior glazed system if there were structural steel elements that may interfere with the installation.

Once a system is selected, the designer must also specify an assortment of add-ons and custom components. Glazing can be specified as captured or with butt joints utilizing structural sealant. Captured glazing systems use a pressure plate to hold the glass in place. These plates come with standard flat snap-on covers but a projecting or shaped cover can be used. Gaskets can be dry or wet sealed, and may consist of silicone, silicone rubber, EPDM, or neoprene. Setting blocks and anti-walk inserts should also be considered depending on the application. Another important accessory is the transition flashing that connects the curtain wall to the adjacent wall construction. While there are several options, the preferred option is a pre-cured silicone transition membrane that can be set into the glazing pocket and span the rough opening gap to the air barrier. Since this membrane can be installed by the waterproofing sub-contractor or curtain wall installer, coordination of the products for compatibility and sequencing is important.

The project specifications should clearly identify each of these accessories and each project performance requirement. Relying on manufacturers’ recommendations, which are often price driven, may not provide real world performance values. Most manufacturer data is based on standard unit sizes and glass types, and does not take into account actual job specific materials and layout. Project specific modeling and testing is recommended to confirm anticipated performances. For this reason, it is recommended that owners and design professionals use a building enclosure professional with curtain wall experience to assist the team through the labyrinth of curtain wall specifying.

Vehicular Operations at Airports

Vehicle safety at the airport, it seems so simple. Just drive carefully, right? Not exactly. Yes, it is important to drive cautiously in an airport environment, but there is more to consider than your own driving skills, such as:

  • Understanding signs and pavement markings
  • How and what to communicate to Air Traffic Control or nearby aircraft
  • Proper radio communications, finding a safe place to park, familiarity with a particular airport’s environment
  • Respecting adverse weather and visibility conditions

The FAA has published two useful documents on this topic. The first, FAA Guide to Ground Vehicle Operations, is a short, comprehensive guide. The second, Advisory Circular (AC150/5210.20A), was released this past fall and includes information on vehicles taxiing or towing an aircraft. These documents have straightforward and valuable tips on how to drive safely in an airport environment. They can also be useful in developing airport rules and regulations.

Prepare Your Site for Winter

It’s that time of year again!

If the upcoming winter is going to be anything like last year, now is the time to begin preparing your site for upcoming inclement weather. Snow and ice can make for a treacherous drive or walk through parking lots and sidewalks. Follow these tips to reduce potential site hazards this winter:

  • Check for low spots that could collect water and create potential icing hazards.
  • Clean catch basin grates and sumps, clear away leaves and make sure the structure is stable and sound.
  • Beehive grates on catch basins can help to prevent clogging in non-paved areas.
  • Ensure gutters are clean and there is no clogging of underground systems.
  • Maintain outlets (flare ends, headwalls, etc.) to ensure positive flow.
  • Ensure there is proper curbing and guard rails to prevent sliding off of the road.
  • Provide clear signage for traffic and pedestrians.
  • Ensure bricks/pavers are set flush for easy shoveling/snow blowing.
  • Create designated snow storage areas.
  • Delineate edges of pavement and curbing to keep plows on the traveled way and out of landscape islands.

Deferred Maintenance: 1920’s Buildings Are Prime for Restoration

The Chrysler Building (c.1928-30)

When we hear the words historic preservation, notions of “antique” often come to mind.  Boston’s Old State House (c.1713) and the Washington Monument (c.1848), both recently restored, reflect true history in both their age and their cultural importance.  Although the iconic Chrysler Building in New York City (c.1928-30) is from a much later era, it similarly reflects the cultural significance of 1920’s architecture.

Buildings constructed in the 1920s are approaching their 100 year mark.  In many cases, their durable enclosure systems (commonly masonry, steel framing, wood, and glass) have lasted with minimal, if any, maintenance.  Due to age and deferred maintenance, these materials may be beyond their anticipated life cycle, resulting in a range of problems that, if left unaddressed, may result in life safety issues, disruption of building occupancy, and increased repair costs.

A sampling of 1920’s enclosure component issues that must be addressed include:

  • Transitional Facade Construction. This construction style incorporates a steel or concrete structural frame with masonry back-up and infill. Masonry and concrete often encase the structural steel frame.  Deterioration problems may be associated with a lack of detailing to accommodate differential movement (resulting in cracking), and reliance on the “mass” of the exterior masonry wall to prevent water infiltration and exfoliation (corrosion) of the embedded structural steel and resultant cracks and spalls.  All must be addressed in any ongoing restoration project.
  • Misconception that Masonry is Maintenance-Free. In the 1920s, masonry was often seen as a high craft.  However, even with the best materials and workmanship, it requires maintenance.  The service life of mortar joints is about 50 years, after this time repointing is often required. Without such maintenance, open joints will allow moisture into the wall assembly, resulting in accelerated damages to backup walls and increased repair costs. 
  • Lack of Energy Efficiency. Improving energy efficiency inside the enclosure of this older stock of 1920s-era buildings requires technical consideration for the type, thickness, and placement of vapor barriers.  Adding insulation to the interior face of exterior walls, if not adequately designed, can result in accelerated deterioration of the masonry and can lead to mold and water infiltration issues.
  • Original Windows and Doors. While original, uninsulated windows and doors contribute to the heritage of the building, they also contribute to poor thermal performance, experience deterioration or corrosion of the frames, or become inoperable.  If replacements are necessary, they can be done in a way that maintains the historic qualities of the building while improving the overall energy efficiency.

Ira Allen Chapel at UVM (c. 1925)

Many 1920s buildings are either on the State or National Register of Historic Places, or certainly have enough historic value to be considered candidates. The Federal Government’s published guidelines, such as The Secretary of the Interior’s Standards for the Treatment of Historic Properties, are among the tools available when considering restoration.

As this group of buildings rises in historic importance, any deferred maintenance should be addressed.  These valuable buildings deserve repair and restoration that will allow them to endure another century and beyond.

Tis the Season…to Check Your Roof Drainage System

Did you know that one of the major contributors to building leakage is when the draining system becomes obstructed?

Leaves obstructing the drain strainer

Trees, dusty areas, and high wind prone locations can affect your roof and gutter systems. Falling leaves, branches, acorns, twigs, and insect and bird debris can accumulate around drain strainers and in gutter boxes, allowing water to pond on the roof. Leaves that block a drain strainer can allow up to six inches of standing water.

Standing water can then leak through small imperfections in the roof, which may be caused by wind scour from wind borne debris, imperfections in the flashings, or damages resulting from routine maintenance and/or walking on the roof. Once these obstructions begin to add up, they are compounded by additional debris, and windblown dirt and dust which can become captured within the standing water.

Dirt accumulating in standing water

Although it seems unlikely, water in your basement or walls can often be attributed to gutter and drain issues. The intent of a gutter is to collect stormwater from a steep sloped roof, and direct it to a downspout. If the downspout or gutter box is filled with leaves, water can potentially sit in the gutter box. This adds weight to the gutter box, and can cause the gutter supports/anchors to become loose and pull away from the wall, or twist. Water can then drain to unprotected areas below, and often can find its way to the building’s foundation system. During winter months, poorly draining gutters can freeze and may contribute to ice dams.

Since it only takes minutes to clean debris from drains, gutters, and downspouts, we recommend that these areas be cleaned prior to winter and following spring to reduce the potential for leaks and building damages which may result from improper drainage.

Post-Installed Anchors for Securing Roof Perimeter Blocking

The roof perimeter edge is one of the most critical components of a roof system when considering wind resistance. It is the first line of defense against catastrophic roof blow-offs, where increased wind uplift pressures occur due to building aerodynamics, particularly in corner locations. Oftentimes overlooked during the design of roof replacement projects, the as-built conditions of the existing perimeter edge must be investigated and examined to determine compliance with building code requirements and association industry standards. Traditionally, the roof perimeter edge consists of multiple layers of continuous 2x wood blocking with end joints staggered and fastened together with annular ring nails or bolts. The fasteners used for anchoring the wood blocking to the roof structure are typically post-installed and vary between adhesive or mechanical anchors depending on the material of the substrate. The anchors at the roof perimeter must be able to resist tensile forces due to wind uplift, shear forces due to wind loads acting perpendicular to the axis of the anchors, and the combination of both forces acting simultaneously. Listed below are a few guidelines when designing or installing anchors for roof perimeter wood blocking:

  • Verify the material and condition of the substrate at the roof perimeter to ensure that the anchors are fastened to a sound, structural element of the roof deck.
  • Spacing and embedment depth of the anchors should be designed to ensure that the anchors provide adequate resistance to wind uplift and other applicable loads; reduce the anchor spacing at the corners of the roof.
  • When the width of wood blocking is greater than six inches, the spacing of anchors should be staggered in two rows across the width of wood blocking. Countersinking of bolts on the lowermost wood blocking must be avoided due to reduced pull-through resistance.
  • Verify that the material of the anchor is compatible with other components such as edge metal fascia to prevent galvanic reactivity.
  • Wood blocking must be continuous at all layers and adequately sealed to prevent air infiltration beneath layers of wood blocking.

How to Use CPA Funds for Athletic Field Projects (Particularly Those Involving Synthetic Turf)

The Community Preservation Act (CPA) enables participating communities to set aside tax revenue and matching state funds for preservation of open space, creation of affordable housing, and development of outdoor recreational facilities. Over a decade of work went into creating the CPA, which was signed into law on September 14, 2000. Click here for more information.

Through the CPA, communities create a local Community Preservation Fund that is raised by imposing a surcharge of less than 3% of the tax levy against real property. Municipalities must adopt the CPA by ballot referendum. In its first 15 years, the CPA has achieved the following:

  • 158 communities have adopted the CPA (45% of the Commonwealth’s cities and towns)
  • Close to $1.4 billion has been raised to date for community preservation funding statewide
  • Over 7,500 projects have been approved by local legislative bodies
  • Over 8,500 affordable housing units have been created or supported
  • 21,838 acres of open space have been preserved
  • Over 3,600 appropriations have been made for historic preservation projects
  • Nearly 1,250 outdoor recreation projects have been initiated

Amendment Allows for Rehabilitation

An important amendment passed in April 2012, allowing cities and towns to use CPA funding to rehabilitate existing parks, playgrounds and athletic fields, rather than only build new ones. This has afforded participating towns far more flexibility in their use of CPA funding, and has provided an added incentive for new communities to join the CPA program.

One of the caveats of the 2012 legislative amendment prohibits using CPA funds to purchase synthetic turf. Given the increasing popularity of infilled synthetic turf fields as a lower maintenance option to increasing athletic field demands, this restriction has had serious implications for many community projects.

The Use of CPA Funds for Infilled Synthetic Turf Fields

Fortunately, within the past 18 months, several Massachusetts communities found the means to complete significant athletic field developments using CPA funding, with one or more of the fields incorporating infilled synthetic turf. The 2012 amendment stipulates that CPA funding cannot be used to purchase synthetic turf. Gale is aware of several communities that have sought and received legal opinions regarding the exact scope of this restriction.
The state has been consistent in its interpretation of the “no funding for the purchase of synthetic turf” prohibition, and it is literal. It is broadly 
accepted that the infrastructure for the infilled synthetic turf field, including materials and labor for installation of the perimeter concrete anchor curb, the formal underdrainage system, and the stone base on which it is installed can be funded by CPA. This accounts for approximately half of the cost of a typical synthetic turf field installation.

To comply with this CPA requirement, we have been involved with several public projects for which local, non-profit booster groups have solicited bids for the turf materials and installation using private funding. Once the purchase was made by the boosters, the materials and their installation were then gifted to the public owner (town or school district). These materials were installed by the turf company under contract to the boosters, over a base constructed by the athletic field general contractor, and paid for with CPA funds. One possible downside to this procurement strategy is the division of the construction between the general contractor funded by CPA and the privately funded turf installation, leading to split liability and responsibility for the resultant surface.

More recent interpretations also substantiate that CPA funding can be used to install the synthetic turf carpet, infill, and markings. As a result, if an infilled synthetic turf field costs an estimated $900,000, all but the actual purchase of the synthetic turf carpet and infill materials can be funded using CPA funding, leaving about $200,000 (the approximate cost of the synthetic field carpet) to be financed using some other source, either public or private.

In one municipality, a local non-profit private booster group solicited bids for the turf and infill materials using private funding. Once the purchase was made, the materials were then gifted to the public owner to be installed by the athletic field general contractor, paid for with CPA funds. Additional advantages to privately purchasing turf materials is the ability to write a proprietary specification for the exact turf system intended (not allowed under Mass Public Bids Laws), and savings related to the avoidance of a general contractor mark-up.


Wildlife Management and Safety at Your Airport

It doesn’t matter what management practices are in place, the fact remains that wildlife and aircraft will share the facilities and skies. To minimize the risk of incidents involving damage to aircraft, and possible loss of human and animal life, airport operators should remain aware of conditions attracting and repelling wildlife at their airports. Wildlife management is a dynamic, ever-changing field with innovative new products and technologies continuously being introduced. The FAA’s Wildlife Strike Database lists thousands of strikes each year on and around airports due to wildlife incursions into operational areas. Airport operators can increase aviation safety by using strategic, effective management practices and observing the effects on wildlife. To determine which practices could best suit your airport, operators should take note of several critical factors regarding wildlife:

  • What are these animals doing that make controlling them necessary? And why are they attracted to your Airport? Control is necessary when animals pose a hazard to aircraft, either on the ground or in the air. Animals are typically attracted to your Airport to satisfy basic needs for food, water or shelter. Identifying why they are at your Airport is an important element in finding an effective solution. For example, if birds congregate in the infields to eat grubs, insects, or edible plant matter; they can be discouraged by using special fertilizer products that, when ingested, cause slight sickness and natural aversion to that type of food. This will result in them vacating the premises – often permanently. So, knowing what animals are doing and what attracted them is important to finding an effective solution.
  • What species of wildlife are causing the problem? Accurate species identification will enable operators to select management practices that are specific to that species. The objective is to control the target wildlife, not all wildlife in the area.
  • What are the daily and seasonal movement patterns of the wildlife, and what are the synergistic effects from the surrounding land uses? An example of a synergistic effect of surrounding land uses causing wildlife movement patterns is having wetlands, lakes, or other nesting habitat on one side, while on the other side of the airport is foraging land, such as restaurants, farms, parks, grocery stores, wastewater treatment plants, landfills, or other wildlife attractants. Periods of activity usually occur in the morning or evening when wildlife will move from nesting to foraging areas.

Controlling the Wildlife

Each airport has its own unique wildlife, and should attempt to tailor practices and operations to address them. Once observations have been recorded, it is prudent to develop a wildlife control plan. There are five principle methods for controlling wildlife:

  • Avoidance – Airport operators may modify operations during times of increased wildlife movement. Although this practice is generally not practical on larger airports with scheduled commercial traffic, general aviation airports will have times when this practice can greatly reduce the risk of incidents. Additionally, temporary runway closures can provide time to disperse the animals.
  • Habitat Modification – any action that reduces or eliminates wildlife’s ability to find food, water, and shelter will likely reduce wildlife hazards. These practices are generally well accepted by the public and minimize the need to harass or harm the wildlife. Reducing the amount of food on or near airports can be accomplished by promoting bird-proof refuse containers, prohibiting the feeding of birds, and promoting good sanitation and litter control programs. Large expanses of open areas at airports also provide habitat for insects and small rodents that attract birds of prey. Taking measures such as mowing and use of insecticides, herbicides, and rodent repellant can minimize risks. Birds also use wetlands and marshes with good vegetative cover as nesting grounds. A good way to reduce their attractiveness is to use vegetation that is undesirable to wildlife. There are varieties of fescue grass that contain fungal microorganisms which are unpalatable to grazing birds, rodents, and deer. Piles of construction debris and discarded equipment also attract wildlife because they provide excellent cover for rodents and coyote. Standing water is also a strong wildlife draw. Where possible, areas that collect water during rain events should be filled or modified to facilitate drainage.
  • Exclusion – If food, water, or cover cannot be eliminated by habitat modification then actions can be taken to cut off access from these areas. Perimeter fencing can be used to keep animals off airport grounds and anti-perching devices can be installed on ledges, roof peaks, rafters, signs, posts, etc.
  • Repellents – Repellents and harassment techniques are intended to make areas where wildlife congregate more undesirable. These practices deter animals by chemical, audible, or visible aggravation; however, acclimation to repellents is a major problem. To effectively employ this type of deterrent, there are a few factors to consider. What type of wildlife needs to be repelled? Is the Airport properly equipped to deploy these types of control measures? Do you understand the movement patterns of wildlife? It’s important to consider a variety of different repellent techniques to minimize acclimation. Use repellents sparingly when the target wildlife is present and only use products approved by the USEPA, FDA, and State Environmental Agencies. Reinforce repellents with occasional lethal control where appropriate. Examples of repellents include:
    • Polybutenes – this repellent make birds uncomfortable when they land on a surface that has been treated because it is sticky and irritating, thus causing birds to look elsewhere to perch.
    • Methyl Anthranilate – this repellent has an artificial grape flavoring used in food and beverages. Birds have a taste aversion to this type of flavoring and consequently with food sources treated with this flavor. Standing water may be treated with this chemical to deter birds from drinking and bathing in it. This type of practice is best used in temporary pools of water after rainfall, since only a few days of repellency is required.
    • Anthraquinone – this chemical is applied to grounds where birds and other animals forage for food. Birds ingesting this chemical become slightly ill and develop post-ingestion aversion to the treated food source. Birds eventually associate the color of the plant with the sick feeling and avoid the treated food source. Treat areas where birds are grazing, and the effects will apply to all areas where that plant is present.
    • Propane Cannons and Pyrotechnics – these methods produce loud blasts which sound like firearms but birds tend to acclimate quickly and it becomes background noise to them. This practice should be used sparingly in conjunction with lethal or other practices.
    • Taxidermy Mounts – replicas or real animal mounts of predators can be helpful in scaring wildlife away from critical areas by producing a “scarecrow affect.” Hawk effigies, stuffed coyotes, and Mylar-reflecting silhouettes have shown to be effective for a short period of time. Radio-controlled model aircraft can also be used to provide both visual and audio stimuli that repels birds.
    • Live Trapping – Specialized traps, drop nets, and snares will help to capture live animals and relocate them to other areas off site.
    • Lethal Controls – These types of management practices are generally frowned upon by the public. These should only be used when all other methods have been exhausted, and should be replaced by a long-term, non-lethal solution.

Of the management practices discussed in this article, the most critical and often overlooked factor in ensuring success of a management program is to employ motivated, trained professionals who are knowledgeable in the management of wildlife, and understand the circumstances at your airport that can cause wildlife hazards.

Additional information on wildlife hazard management:

Wildlife Hazard Management at Airports

Provides information on the FAA Wildlife Strike Program, the FAA National Wildlife Strike Database, agencies and organizations having jurisdiction over wildlife, federal regulations and policies impacting wildlife management, identifying wildlife hazards at airports, developing Wildlife Management Programs, evaluating Wildlife Management Programs, training for Wildlife Management Program personnel, and wildlife control strategies and techniques.

Hazardous Wildlife Attractants On or Near Airports

Provides guidance on certain land uses that have the potential to attract hazardous wildlife on or near public-use airports. It also discusses airport development projects (including airport construction, expansion, and renovation) affecting aircraft movement near hazardous wildlife attractants.

Cover Board Selection for your Single-Ply Roof System

Selecting the right cover board for your single ply roofing application can have a major impact on performance and longevity of the system.  Cover boards provide several purposes within a roof assembly including:

  • Insulation protection (against crushing) and thermal improvement
  • Strength and durability (hail and impact protection)
  • Fire resistance
  • Sound resistance
  • Dimensional stability of the insulation system

In March 2000, the National Roofing Contractors Association (NRCA) endorsed and recommended the use of cover boards over polyisocyanurate insulation, which superseded previous NRCA Technical Bulletins and revisions on the topic, dating back to 1978.

There are several cover board options for single ply roof assemblies, each with their own sets of pros and cons.  Four main types of cover board materials for single ply roof systems include glass-mat faced gypsum, fiber-reinforced gypsum, high density polyisocyanurate and wood fiberboard.  The pros and cons of these four main types are described below:

Understanding the differences in these materials will contribute to the success of the design, installation and performance of your single ply roof system.  All roof systems present unique challenges to achieving a long lasting, thermally efficient building covering.  For specific assistance in selecting the material that is appropriate for your roofing application, contact Gale Associates.

Alternative Infill Materials for Synthetic Turf

The use of synthetic turf is extremely popular, not because of the aesthetics or playability, but for the increased field usage synthetic turf can sustain. A properly scheduled natural turf field can be used approximately 200 times per year without significant degradation of quality. Comparatively, a synthetic turf field can sustain at least twice the amount of play without sacrificing quality or increasing maintenance costs. This increased usability can eliminate the need for owners to construct and maintain additional natural turf fields to accommodate the usage demand. Synthetic turf also can be used in almost any weather, and can take the pressure off of facilities managers to decide if a field is too wet for play. Without an NFL-sized budget, natural grass cannot be maintained in playable condition with such intense everyday use. This is especially true now that most states and municipalities restrict the use of irrigation, pesticides, herbicides and fertilizers on public properties.

Click here for tables that highlight the many choices that must be considered when choosing between the various infill materials available for turf.

Creating a Snow Removal Plan for Synthetic Turf Fields: The Best Defense is a Good Offense

With the incredible amount of snow we have received this year, especially in New England, it is important to have a plan in place to remove snow from your synthetic turf field in a careful and timely manner. Snow removal plans are crucial for avoiding delays to spring sports and costly repairs for damages related to improper removal. Below are some important factors to consider when creating a plan:

Logistics. Managing snow removal operations from a turf field requires a logistical procedure to protect the safety of the field, exterior equipment, and site amenities. Do you have a track or trench drain that circumscribes the field? If so, make sure the drain is clear of snow or ice to allow drainage when the snow melts. Also, prepare the turf curb for equipment to navigate over the lip. Use plywood or a manufacturer approved material to create a flush condition at the curb lip. This is especially important for maneuvering larger pieces of equipment

Whom to hire? If you don’t have trained operators or the proper equipment in house, ask your turf manufacturer for their recommendation. Manufacturers typically have a list of reputable contractors they recommend for the work. Be sure to hire a company with both field and plowing experience. While some contractors may have experience with synthetic turf fields, this does not mean they are experts in plowing snow. Claims occur every year from faulty plowing operations for areas on and off the fields.

Equipment and Vehicle Circulation. Use of Low Ground Pressure (LGP) tracks is highly recommended. Snow blowers are also an option if engineered for the job at hand. Bulldozers, dump trucks, and any large pieces of equipment should not be allowed on synthetic turf fields. Equipment that can exert a large concentrated load (over 300 pounds per square foot) on the field, and has the ability to turn sharply is a concern for the stability of the base. Repair of the base (the material located beneath the turf carpet) would most likely require removing the synthetic turf and infill material and re-grading that area. Be aware of the possibility of creating divots or depressions beneath your turf field. Vehicles should be inspected prior to each snow removal operation to make sure they aren’t leaking since leaks can cause permanent staining and/or breakdown of turf fibers. Vehicles should only be allowed to turn on a wide radius or when in forward motion, and should not be left idling or unattended since the exhaust could singe the turf fibers. Sudden braking and sharp turns can cause damage.

Buffer the blade. Many turf manufacturers describe proper methods used to plow fields within their maintenance manual. Attaching a PVC pipe to the bottom of the blade of a typical snow plow is often used. This allows a rounded edge so the blade doesn’t dig into the infill or make contact with the turf backing. It is highly recommended that the bottom edge of the blade is elevated by 1” – 2” above the top of the infill material to eliminate any chance of contact. If the blade is left untreated (no PVC pipe), or is allowed to make contact with the infill, there is a significant risk of transporting the infill to other parts of the field or even off-site with the disposal of the snow. When snow is wet, the underlying infill material and crumb rubber tends to cling to the snow above it. The bottom 1” of snow should be left to remain on the field during removal operations. Any remaining snow (approximately 1” deep) from plowing operations will melt off on the next sunny day.

Use a snow thrower or snow blower. Some companies have state-of-the-art equipment specifically designed for removing snow from synthetic turf surfaces. Snow throwers are becoming popular, especially for fields that have limitations due to perimeter fencing. Snow throwers can launch snow up to 70 feet. This may be of interest to owners who have a running track that circumscribes their field. Some snow blowers also have 1/2” high skis to make sure the blade stays elevated above the synthetic turf surface.

Load Limits. When initiating snow removal operations, make sure to consult your maintenance manual for information about load limits. Many turf manufacturers recommend a static or stationary load not to exceed 300 pounds per square foot. Manufacturers also recommend a rolling load limit of no more than 30 pounds per square inch, which accounts for ambulances or general maintenance vehicles that may visit the field. Unusual heavy loading can result in settling or rutting of the base material. This is especially true for snow stockpile areas. Permanent depressions can result from the heavy weight of snow. An 18” depth of snow over the footprint of the field can result in loads of approximately 31.5 pounds per square foot, or more. This amount of load is not a concern for the field, but when snow is stockpiled in an area and blended with ice or supplemented with rain, a pile of snow, water and ice mix could exert over 300 pounds of force per square foot!

Avoid Accumulation. Snow accumulation of more than a few inches becomes unmanageable for smaller pieces of equipment, such as pick-up mounted plows, that may be used for plowing operations on your synthetic turf field. Another problem is the formation of ice when snow begins to freeze/thaw. Any snow left standing on your field will freeze to an icy consistency as water is drawn out from the snow. If large storms are anticipated, your field should be plowed in 4’’ – 6’’ increments as needed.

Ice Removal and Chemical Treatment. Unlike powdery snow, ice causes many dilemmas for removal from synthetic turf surfaces since it prohibits the use of plows, snow blowers, and snow throwers. Though not all of the turf manufacturers’ maintenance manuals outline chemical treatment options, some recommend using calcium chloride for treatment of ice. Calcium chloride will leave a temporary residue on the turf’s surface and infill that will fade with time. Other manufacturers recommend spreading a pilled fertilizer grade urea at a rate of 100 pounds per every 3,000 square feet.

Cleaning up in the spring. After completing all of the plowing and snow blowing, there will need to be some touch-ups. Snow removal, regardless of how meticulous, usually leads to unbalanced areas of infill within your field. Sometimes unbalanced areas of infill require an industrial sized rotary brush or power brush to move the infill in large quantities over large distances. This would require more effort than typical field grooming operations. Many turf manufacturers or installers offer advanced care services that include final snow or ice clean up, as well as brushing and grooming the field in preparation for spring sports.

Plowing gone wrong. As an industry, we’ve learned from prior failures and developed standards and guidelines to prevent the likelihood of undesirable conditions. When infill material is removed from the field during snow removal operations, it is often left to maintenance staff to clean it up and remove it from the site. This results in a signifant depletion of infill from the turf playing surface resulting in compromising field performance and longevity. It is also very costly to replenish any lost infill as a result of poor plowing.

Remember, having a plan in place before the snow starts falling is the best way to avoid potential delays to spring sports and damage to your field. It you need assistance, contact Gale or consult your turf manufacturer.

Sources: SprinturfRAD SportsAPTShaw Sports TurfFieldTurfTurf Prep

When the Cold Comes Creeping In – How to Extend the Life of Your Aluminum Windows

If you are experiencing air leaks through your aluminum windows (and window replacement is not an option); there are other ways to mitigate air flow, maintain your current window, and keep the interior space at a more pleasant temperature.

Replacing the glass, the glazing seals, and the weatherstripping/gaskets at the operable units can reduce heat loss going out and cold air coming in the windows. Also, many aluminum window systems are interior glazed, which means the glass replacement can be done from inside the building. Certain types of glass, including tinted and low-E coated, in conjunction with gas-filled insulated glass units (IGUs), will increase the overall insulating value of the glass and window. Applying glazing tape and an interior cap seal will prevent cold air from leaking into the building around the glass unit. It doesn’t matter whether your window incorporates bulb, brush, pile, or vinyl weatherstripping. If it is in poor condition or missing, installing new weatherstripping will help keep the cold out.

FAA Guidance for Snow Removal at Airports

Where will we put all this snow? Winter can be a difficult time of year for any airport, especially with this year’s unusual snow amounts. The FAA provides some help and guidance for creating snow and ice removal plans for airports of all sizes. Their “Snow and Ice Control Plan Template” prompts users with snow-related questions in order to customize a plan to your specific airport’s needs. It also helps in identifying safety and logistical issues that may be a problem. Click here to view the template.

Considerations for Snow Loads on Roofs

With considerable snowfall forecast this year, it is important that building owners and managers pay close attention to their roofs to avoid potential collapse.

Roof snow loads are based upon various factors including the regional ground snow load, exposure factor of the building, and whether the building is heated, insulated, and/or occupied. Additional factors, such as geometry of the roof, pitch, roof covering, and unbalanced loading, also affect the design snow loads. Drifting can occur on roofs adjacent to rising walls, at roof projections or adjacent buildings, including those created by building additions or modifications.

Snow loads on roof structures can vary considerably from state-to-state and region-to-region within a state. For example, using a 100 ft. wide, flat roof, heated and occupied office building, the following flat roof design loads are required by code (ref: ASCE 7-10)

With rain on top of the snow layer, or snow on top of the ice layer, the density of the snow and resulting load to the roof can be significantly increased. The roof framing could be structurally overstressed if the snow load is more than that carried by design. Likewise, the depth of allowable snow on the roof could be greatly reduced if ice or additional moisture is present in the snow layer.

To monitor and help safeguard against excessive snow overload of roof structures, building owners and managers may wish toconsider performing the following steps:

  • Check the original design documents to determine if the roof was properly designed. The General Notes of many structural drawings state the design roof live load, the design snow load, and a statement about “drifting conditions.” Contact a structural engineer if there are questions regarding the “as-built” construction and structural capacity. A cursory review of the building should be performed by the structural engineer to verify that the building was generally constructed in accordance with the documents.
  • Review subsequent renovation/modification drawings for conditions that could result in additional loading as a result of ponded water and drifting snow. Ponding conditions due to renovations or additions are typically the result of impeding the originally designed drainage patterns (i.e. a structure or roof-mounted unit is placed in an area that blocks the existing drains). Drifting conditions can result from screen walls, new structures, or equipment.
  • Verify roof drainage capacity and the existing drains/scuppers are not frozen, which can impede the drainage from the roof. If necessary, clear the drains to promote free flow. Frozen drain lines will impede drainage, which may result in broken pipes. A heat-trace system to keep open flow can be considered. Consult a roofing professional if the drains appear to be undersized or incorrectly located to remove most of the water. Small ponded areas can have a detrimental effect on the roofing membrane, while large or deep ponded areas may have serious structural implications known as ponding instability. If snow or live loading results in structural deflection or creep in the structure, additional ponding may result, which ultimately could impact the capacity of the structure.
  • Observe the interior of the roof structure for potential deflections. Observe the ceiling, lighting, HVAC, and plumbing components, and monitor changes such as vertically-deflected sprinkler heads or displaced ceiling grids (suspended ceilings), which indicate possible deflection of the structure. These components are typically suspended from the roof framing and may indicate that the roof is experiencing deflection. If this condition is observed, remove snow from the roof as soon as possible, and seek advice from a structural engineer to determine whether the building is safe to occupy. For gypsum deck or wood deck roof systems, inspect spot locations to determine if there appears to have been a disturbance of original paint lines, dust lines, dirt lines, etc., which could indicate that the deck has been displaced from its support elements (bulb tees, joists, etc.). Look for deflected or cracked deck elements. Review exterior conditions for oxidized (rusted) metal decking or joists, sagging wood decks or saturated wood framing, or concrete supports that are spalled or delaminated. A structural engineer should analyze cracked beams, deflected joists, and damaged or deflected decking immediately.
  • Determine a safe depth of snow for the roof in general and some specific drifting areas. Monitor the roof during heavy snowstorms to check that safe snow depths are not exceeded. A 1.5′ depth of snow will result in an approximate snow load of 31.5 psf and more if the snow contains ice or additional moisture. This will be particularly critical in snow drift locations for buildings designed prior to the 1970s, which may have been designed without consideration for drifting loads.
  • Develop a snow removal plan. If it is structurally safe to do so, consider shoveling snow off the roof onto the ground and not onto adjacent roof areas. Unbalanced and excessive snow loading may damage or overload the structure. Remember that the roof is going to be slippery and consider the safety of the workers when deciding if the snow should be removed (and use appropriate fall protection equipment). Take care not to damage the roof membrane during removal operations. Do not torch snow as a means to melt the snow as this may create a fire hazard and additional ponding may result if drainage is impeded. Do not add water to the roof system in an attempt to melt the snow away. Water presents a very dynamic loading condition, and unbalanced snow loading, poor drainage and ponding may worsen the loading. Remove pieces of ice and icicles from the roof and roof edges with care and at a distance to avoid injury. Do not use de-icing chemicals on the roof. These harsh chemicals may harm the roof materials, drain systems, and associated roofing items. Do not use snow blowers, tractors, or other machinery that will add load to the structure.
  • Free standing canopies, attached canopies, and overhangs are especially susceptible to excessive loading of snow. Keep the areas beneath the canopy clear. Structurally shore up areas that may be in danger of collapse if it can be performed safely.

MA Emergency Management Agency – Info on Upcoming Weather

Forecast Summary from the National Weather Service

A very active weather pattern will continue for the remainder of the week into the upcoming weekend.

Today, an area of low pressure will intensify. Light snow will envelop the region through the day and into the evening hours. Heaviest snowfall amounts are expected across southeast New England, especially the outer-Cape and Nantucket where around 2 to 4 inches are forecast. Behind this system, northwest winds will usher cold arctic air across the region. The combination of the two will result in wind chill values into Friday morning of around 15 to 25 degrees below zero across interior Southern New England.

Another night of cold conditions is expected late Friday night into Saturday morning. Temperature lows across much of the area will be well below zero. Combined with lighter winds, there is the likelihood for wind chill values to fall as low as 20 below-zero across the interior.

Into the weekend, light to moderate snow will spread across southern New England Saturday into Saturday evening. Overnight into Sunday, this low pressure system will strengthen quickly presenting the potential for blizzard conditions across east and southeast coastal New England with snowfall amounts in excess of a foot and winds gusts up to 60 mph on the Cape and Islands, up to 50 mph along the coast and in southern Bristol and Plymouth counties, and up t0 40 mph in central and northeastern MA. The storm concludes Sunday night into Monday, but behind it, some of the coldest air of the season arrives delivering the potential of high temperatures on Monday barely breaking the teens in eastern MA and in single digits in central and western MA.

Highlights of the weekend storm include:

  • Potential for a significant snowfall of over a foot with blizzard conditions across east and southeastern coastal New England
  • Significant impacts to travel.
  • Northerly winds will be gusting 35 to 45 mph Sunday into Sunday night with 50+ mph gusts possible for the Cape and the Islands.
  • Snow will be fluffy and combined with winds expect blowing and drifting of snow.
  • Expect visibilities of a quarter mile or less, especially for east and southeastern coastal Massachusetts.
  • Tides above 10 feet in Boston Sunday morning; surge likely; threat to north-facing beaches (i.e., Cape Cod Bay).

Snow Removal Safety Tips from OSHA

During harsh winters, snow removal from rooftops and other elevated surfaces can be vital in preventing building damage.  It is important to remember that the removal process can be a dangerous one. Click here to read OSHA’s tips for keeping workers safe during rooftop snow removal.

Gale is Featured in College Management and Planning Magazine

Edward J. Stewart, RRC, Senior Associate at Gale, contributed to an article titled: “The Building Envelope: A Guide To Determining Problems” in the November 2014 issue of College Management and Planning magazine. The following is an excerpt. To read the full article, click here.

“The more you know about the building’s history before you begin the investigation, the less intrusive the evaluation will be,” says Edward J. Stewart, RRC, senior associate of Weymouth, MA-based Gale Associates, Inc., which specializes in the repair, renovation and adaptive reuse of existing buildings.

Stewart recommends having the original design and construction documents, as well as a history of repairs and renovations, which reduces invasive testing and also ensures that future repairs and renovations are made with products the same as or as close to the original as possible to ensure the same performance characteristics.

“Compiling these documents gives you a solid understanding of the as-built construction and tells where there may be potential problems,” Stewart says. “It’s not always possible, though. That’s when it becomes a guessing game as to what the underlying conditions are.”

Surviving Hurricane Sandy . . . and Other Disasters

This recent article published in the Journal of the National Institute of Building Sciences contains helpful information (especially for our institutional clients).  As a number of recent events have reminded us, disasters come in all forms and formats. Whether these disasters are natural or man-made, it is within our collective ability to limit the devastating effects of these events, shorten recovery time for communities and lessen the burdens they face. To read “Healthcare Facilities: Lessons Learned after Hurricane Sandy,” click here and go to page 12.

Non-Traditional Funding Alternatives for Public Athletic Facility Projects

Funding for public athletic facility projects has changed dramatically in the last decade. The days where a municipality could go to a town meeting and seek an override approval for 100%, or float a bond for 100%, of an athletic facilities project are essentially over. The fiscal reality is that municipalities have been forced to consider steep financial cuts to schools and public safety services (police and fire). The “extras,” such as athletic facility enhancements, have, out of necessity, taken a back seat.

Although traditional funding is not readily available, the demand for public athletic and recreation facility enhancements has actually risen. This is due to continued population growth in urban areas, enhanced diversity of sports, and increased gender equity in sports. Municipalities are now compelled to find “out of the box” ways to meet this growing demand, and the solution begins with creative funding. To be successful in raising the funds for an athletic or recreation project, the municipal or non-profit Owner should assemble a fundraising group that considers the following options concurrently:

  • Public and private grants
  • Private funding
  • Sponsorship (naming rights)
  • Public and private partnerships
  • Donor in-kind goods and services
  • Developer off-site mitigation
  • Utility Leases
  • Professional fundraisers

To read the entire article, click here.

Building Envelope Commissioning Can Help Avoid Common Issues in Building Construction

The successful performance of exterior building enclosures assemblies can be attributed to the planning implemented during the initial phases of the design process, and requires the combined efforts of the owner, enclosure commissioning consultant, design team, and contractors. Building enclosure commissioning (BECx) can help avoid common issues in building construction, such as water intrusion and air infiltration, which can lead to indoor air quality issues, mold growth, and energy loss. BECx services are a small fraction of the overall construction costs, and even smaller when considered in relation to the cost of repairs.

Click here to read the full article written by Gale’s Edward J. Stewart, RRC, published in the October 17-23 issue of the New England Real Estate Journal

The Benefits of a Roof Management Plan

Facility managers are being required to manage more buildings with less staff and budget than ever before. With many buildings to oversee, and less personnel available to stay current, it has become critical to develop organized methods for tracking past, current, and future building repairs. Facility managers are required to keep careful track of detailed repair histories and recommended repairs, while managing current and projected costs. A formal roof management plan (RMP) can assist in the day-to-day operations and long-term planning.

The purpose of a well-defined RMP is to establish current and long-term budgeting for roof repairs/replacement. Facility managers are often expected to estimate the type, and more importantly, the cost of repairs necessary not only for the next year, but often for the next five to ten years. They seldom have the resources necessary to evaluate their roofs on a yearly basis so are forced to make educated guesses regarding the types of repair or replacements needed, based on the roofs’ history and age.

Estimating roof repair and replacement costs using warranties and expected roof service life can be ineffective since roofs fail for various reasons including the material/system designed and installed, amount of traffic or mechanical equipment maintenance on the roof, and weather conditions. It cannot be assumed that a five-year-old roof won’t need maintenance or repairs for another fifteen years. The best way to track and predict roof system performance is with a well-organized RMP that consists of the following components:

  • Building histories are used as a background for the report and include the name, use, and age of the building; type of roof system; and repair history. Knowing the roof’s history is invaluable in understanding its current condition and in anticipating potential repairs/ replacement needs.
  • Roof warranty information is critical for making claims on roof failures and, in some instances, scheduling maintenance checks by the manufacturer’s representatives. This information must be provided by the facility manager and can be included as an appendix within the report for easy reference.
  • On-site visual evaluations are necessary because the condition of roofs cannot be determined without a visual observation of the membrane, seams, flashings, transitions, and associated components, such as potential moisture intrusion concerns at rising walls. Copies of the existing roof area plans should be used if available. A detailed plan that notes penetrations, parapets, drains, etc. is used to note defects observed and is included within the report. It is best to develop a simple number key for noting common defects that can be referenced when reviewing the report.
  • Non-destructive testing (infra-red thermography) can be used to note areas of trapped moisture within the roof assembly. The amount of moisture in the roof system can help a facility professional to determine if the roof can be repaired or if it should be replaced.
  • Destructive testing (roof cuts) will verify trapped moisture and confirm the as-built construction. Test cuts can be helpful in validating energy code requirements based on insulation type and thickness.

Not all of the above steps are critical to determine the conditions of various roof systems. Based on the size and complexity of a roof, a simple visual evaluation may be all that is necessary. It also depends on the particular needs of the facility manager.

Determining Priorities.  Once the field evaluations (and testing) have been performed, a priority list of recommendations is developed. Facility managers responsible for large campuses most likely cannot perform all recommendations in one year. The intent of a roof management plan is to determine which roofs are the priorities. For example, if a hospital has two roofs that leak and are in equally poor condition, the roof that is above Patient Recovery would be a priority over a less critical care area.

Developing the Report.  The condition of each roof is summarized and placed in a three-ring binder so materials can be easily updated or added. Campus plans and photographs of various defect conditions are included. Spreadsheets that display priority repair/replacement recommendations for budgeting purposes, as well as a budget matrix are also included. This provides the facility manager with an easy reference guide that can be reviewed when planning the fiscal budget.

Securing the Building Enclosure

Recent tragedies have led to a growing demand for increased safety measures in building design, especially in schools. A large number of schools in the United States were built before 1985, when security design was not emphasized. In addition to implementing training for emergency response, many modern-day school administrators have initiated such preventive measures as controlling building access and providing additional means for emergency egress. In fact, since the late 1990s, building and school ground access control measures during school hours have increased more than 17 percent and 12 percent, respectively. Many schools also are implementing faculty identification badges, video monitoring and telephones in classrooms.

Although fenestrations (e.g., windows, doors, louvers, vents, etc.) are the most vulnerable components of a building enclosure (and, thus, highly susceptible to unauthorized access), school designs are incorporating increasing amounts of glass and windows due to the positive benefits of natural light. Although vulnerable, certain design concepts can be implemented to help secure fenestrations, either as new construction or renovation programs. These provisions will improve students’ ability to enjoy the benefits of natural light, without compromising building security.

Click here and turn to page 26 read the full article by Gale Project Manager, Steven R. Marshall, RRC, LEED AP.

Innovative Solutions to Wastewater Site Constraints

It is no secret that the lack of prime buildable land has encouraged real estate developers to be “extra creative” when planning new construction and redevelopment projects in recent years. Challenging site constraints such as topography, soil conditions, environmental resource areas, and zoning setbacks have forced a game of give and take when it comes to a building’s footprint, parking, accessible routes, and landscaping requirements. Often overlooked in this process is the importance of providing adequate space for your on‐site sewage disposal system.

The capacity and location of the on‐site sewage disposal system becomes increasingly important when planning mixed‐use developments as the tenancy is typically unknown, or may change in the future. There have been numerous instances in which the tenant occupancy was actually constrained by the design of the disposal system. There have also been various cases where a disposal system was designed, permitted and installed in anticipation of expected retail tenants only to find that a food establishment or health club, or both, were better suited for the location due to current economic conditions.

Property owners and developers should not be at the mercy of their sewage disposal system design. If the on‐site disposal system is not designed with expansion or flexibility in mind, changing or signing new tenants could be a challenging and costly proposition. When maximizing a new site for development, it is crucial to strike an appropriate balance between disposal system capacity and gross floor area of your building. The use of some innovative and alternative (I/A) septic systems can allow a developer to build a system that is capable of handling the same flow as a traditional system but requires less area. This allows a larger building footprint, more flexible occupancy, and greater revenue potential.

There are several forms of I/A septic systems, including:

  • Textile filters;
  • Trickling filters;
  • Alternative soil absorption systems (SAS); and
  • Aerobic treatment systems.

Various I/A techniques provide superior treatment of wastewater effluent and additional storage volume, while allowing for a significant reduction in necessary footprint area. Although states have the jurisdiction to regulate reduction in footprint area, Massachusetts currently allows up to a 40% reduction from a traditional system. This can result in land area savings of more than 5,000 s/f, leaving the excess available for building area. Even greater reductions can be achieved in other New England states, such as N.H. and VT.

Developers and owners should also be aware of the potential cost savings when using certain I/A systems. Traditional on‐site sewage disposal systems that are sized to handle between 2,000 gallons per day (GPD) and 10,000 GPD require a pressure dosed pipe; and stone, or chamber and stone system. This requires expensive pump equipment, large emergency storage chambers or emergency back‐up generators, as well as electrical infrastructure and ongoing mechanical maintenance. Environmental regulators have agreed that certain types of I/A systems should not be pressurized and therefore do not require expensive equipment or significant maintenance. Certain I/A systems also use clean sand in place of crushed stone which can result in savings of up to $10 per cubic yard.

A component of sizing on‐site disposal systems is determining the long‐term acceptance rate (LTAR) of the system. This is a measurement of how much effluent the in‐situ soil can accept and infiltrate into the ground. This varies based on soil texture and the effluent’s strength, which leads to a biomass on the soil. Traditional pressure dosed systems restrict the use of higher loading rates in sandy soils, hence increasing absorption field size. However, I/A systems allow higher loading rates, resulting in superior land use efficiency over traditional systems.

All sites are different and each will require unique and creative land planning. I/A systems are not appropriate for every site but when municipal sewer is not available; owners should be aware of their options for sewage disposal and to consider implications for future expansion and flexibility.

Low Investment, Low Impact Sustainable Water Management Techniques

Low Investment, Low Impact Sustainable Water Management Techniques” by Gale’s John M. Perry, P.E. was published in the Facility Management Journal.

Most state regulated stormwater standards mandate that Low Impact Development (LID) techniques be considered when planning drainage solutions. In some cases owners and designers have seen this as burdensome, unnecessary or over the top. What many owners are not aware of are the significant potential cost savings associated with LID techniques.  Consider a road or access drive with a traditional curbing and closed drainage conveyance system.  The road will have curbing on both sides, two catch basins and one drain manhole per every 300 feet and a minimum 12-inch drainge pipe along the entire length. Now consider the same roadway with a vegetated conveyance swale on each side; this will have no curbing, no drainage structures and no piping. An owner can expect to pay up to $155 per linear foot for the traditional closed drainage system versus around $58 per linear foot for the vegetated swale option; a savings of almost 3 times.  Other cost savings measures of LID techniques are:

  • Use bioretention as landscape area to meet zoning requirements – two for one deal.
  • Bioretention areas negates the need for multiple catch basins within a parking lots, typically only one catch basin is needed as an overflow.
  • Bioretention areas can eliminate or greatly minimizes the need for underground storage which can result in large savings in plastic or concrete chambers and crushed stone.
  • The use of permeable surfaces for recharge can be used for in place of infiltration basins which can lead to more space for development and potential revenue.
  • Proper site selection can minimize disturbance to wetlands and habitats therefore reducing costs of mitigation efforts.  Proper site selection can also limit dewatering efforts, costly erosion control measures and overall site construction complexity.
  • Use native plantings, they tend to be locally grown which limits travel and fuel costs.
  • Drought tolerant plantings eliminate the need for irrigation thus saving on installation costs and water usage.
  • Consider using silt socks rather than hay bales; they are easier to install / remove and can save significant labor.
  • If work within wetlands is necessary, consider using directional drilling.  You can save time and money on trenching, tree cutting, mitigation, replication, erosion control and permitting.
  • Consider the use of LED site lighting.  LED lighting gives flexibility to dim, put on timers and even control from  your smart phone.  You will pay a premium up front but can experience considerable savings in energy and fixture replacement over time.


FAA Deadline for Comments Extended – Aircraft Hangar Policy

The FAA is considering changes to their aircraft hangar policy, and comments will be received until October 5th, 2014 (the original deadline was September 5, 2014). The policy change can be reviewed in the Federal Register where comments can be received. These changes will affect all airports and the FAA is looking for comments, good or bad. To access the Federal Register and comment, click here. Don’t forget, if you want to discuss these changes, please feel free to call us at 603-471-1887.

Land Uses in the Runway Protection Zone

The Federal Aviation Administration (FAA) has recently reissued the Airport Design Advisory Circular (AC 150/5300-13A); the first rewrite since 1989.  One of the biggest changes involves the Runway Protection Zone (RPZ).

The RPZ is a two-dimensional trapezoidal area located at the end of a runway extending into the approach. It is required to enhance the safety and protection of people and property on the ground.  Where practical, Airports should own the property within the limits of the RPZ and clear all above-ground objects.

In the renewed Airport Design AC, the dimensions, location and basic definition of the RPZ have not changed.  What has changed is the definition of permissible uses for land located in the RPZ that may or may not require further evaluation and coordination.  The following table describes those land uses:

Challenges continue to exist with the RPZ because guidance is still evolving.  For additional information, please refer to the following resources:

Caution: Non-Aviation Use of Airport Land

It is springtime – finally! This is a time when local governments or others may request to use apparent “unused or vacant” airport land to support recreation as bike paths, athletic fields, parkland or wildlife refuge. These types of uses are classified by the Federal Aviation Administration (FAA) as “Section 4(f)”. Prior to considering requests to allow airport land to be used for these purposes, Airport Owners/Managers and Commissions should consider Section 4(f). Under that section, an airport may become solely responsible to pay for unforeseen mitigation or enhancement expenses.

The 4(f) designation is shorthand for regulations [Section 4(f)] that fall under the U.S. DOT Act of 1966. When considering an airport project, the effect of a 4(f) resource should be taken into account. This means the airport must try to avoid it, minimize impacts, mitigate impact or enhance the resource. Chapter 7-3(e) of the Airports Desk Reference discusses temporary leases or agreements that may permit the use of airport property for Section 4(f) purposes.

Airport Owners/Managers and Commissions should also note that the potential mitigation or enhancement costs incurred by the airport may not be eligible for reimbursement by FAA.

Visit these sites for more information:


Retrofit Put to the Test

“Retrofit Put to the Test” by Gale’s Brian H. Neely, AIA, CDT, NCARB and Joshua T. Hogan, E.I.T., was published in the April 2014 issue of Durability & Design.

Across the United States, buildings in which people live, work, shop and study use about $200 billion in energy each year. That’s a significant portion of the nation’s energy-use and carbon footprint. While the energy efficiency of new buildings has improved dramatically over the past two decades, many older buildings remain substandard in meeting insulation and air-infiltration requirements.

Buildings older than 20 years comprise more than 70 percent of our building stock. Improving their thermal performance offers a great opportunity to conserve energy. A variety of energy upgrades are available for these buildings.

Energy conservation isn’t the only reason for retrofitting buildings. Retrofits are often more cost-effective than constructing a new facility. Upgrades can extend building service life, increase asset value and contribute to a healthier, more comfortable environment for occupants.

Upgrades can save money, reduce emissions, and provide investment opportunities and jobs.

Existing and retrofitted buildings went head-to-head beginning in 2012 when a New England university began a phased, three-year-upgrade of the building envelopes of three identical, energy-inefficient dormitories. The project’s goals included extending the service lives of the buildings and improving energy efficiency, durability and aesthetics, while reducing maintenance requirements.

The work provided an opportunity to measure the change in air infiltration and thermal transfer in the exterior walls, from existing to retrofit. Testing revealed where airtightness was improved by as much as one-third, and where future retrofits might focus.

Click here to read the full article.

Avoid Thermal Bridging Issues During Building Enclosure Design

With today’s push for building the most sustainable and energy efficient building, it is increasingly important for design and construction teams to understand how different building enclosure components and materials function once installed as a complete assembly. Building enclosure under-performance may lead to unforeseen ownership costs and repairs, and failing to achieve anticipated energy savings. Such issues can have been avoided through proper considerations during project conception, design, and construction.

Depending on stated R-values and material, thermal resistance can be misleading and reduce potential energy savings if they are not considered as a full assembly. For instance, heat (or energy) is transferred from the conditioned interior space to the building exterior through conductive (metal) attachments, anchoring the exterior wall cladding to the structural steel wall framing. These highly conductive thermal bridges cause direct heat flow paths through the insulation. Depending on the attachment method and insulation depth, they can reduce the overall thermal resistance of a wall assembly by upwards of 50%. A wall with R-13 within metal studs and a continuous R-8 is reduced to R-16, and is further reduced when the thermal conductivity through the attachment components (like 2 girts) are considered.

Several recent research studies provide a better understanding of how heat transfer via thermal bridging impacts a building’s overall energy efficiency. One such example is the ASHRAE Research Project 1365 “Thermal Performance of Building Envelope Details for Mid- and High-Rise Buildings.” Click here to download the original report and also the ASHRAE Research Project 1365. A proper understanding of the thermal performance of the exterior wall assembly is critical to achieving proposed energy savings and project performance requirements.

Avoiding Air Barrier Pitfalls

“Avoiding Air Barrier Pitfalls” by Gale’s Brian H. Neely, AIA, CDT, CBST and Robert F. Mimmo, CBST was published in the November issue of Durability & Design. The article highlights dos and don’ts of installing air barriers through the exploration of four case studies. Below is an excerpt:

Air barriers, when correctly installed, help buildings achieve high levels of energy efficiency by decreasing heat loss. For example, great pains are taken to stop the uncontrolled passage of air through building envelopes of passive houses, which routinely reduces energy consumption 80 – 90 percent compared to traditional buildings (according to the U.S. Department of Energy). But, when air barriers are incorrectly installed, they can cause problems for buildings, including deterioration of sheathing structural members, and can contribute to the formation of mold in the wall system.

Click Here to Read the Full Article

Understanding FAA Data on Obstructions and Surface Penetrations

On a periodic basis, FAA Flight Procedures collects data on airport obstructions and shares this information with individual airports. Airport managers typically receive an email that includes one or more spreadsheet summaries of surface penetrations, and a Google Earth (.kml) file that presents the penetrations graphically. While this information is useful for long-term maintenance of obstructions, Gale Associates, Inc. has received inquiries from airport clients regarding how to best understand and use this information. Gale offers the following guidance for our airport clients:

Know Your Surfaces. FAA will often send obstruction data for more than one runway approach surface. This may give the impression that there are obstructions that need to be  removed, when in fact, that approach surface may not apply. Each airport manager should be familiar with the approach surfaces that are to remain clear. Only the appropriate files sent by FAA should be used to identify and clear obstructions as part of the airport’s maintenance program.

Smart Spreadsheets. The spreadsheets sent by FAA include a lot of useful information to help identify and locate obstructions. Information regarding ground elevation, obstruction heights, and the severity of surface penetration is included. Airports can use the Latitude and Longitude coordinates provided to locate obstructions in the field. The knowledgeable and careful use of an affordable hand-held GPS unit may be useful in assisting the airport in validating the location of obstructions in the field.

Get Google Earth. This useful tool must be installed on your computer in order to open the .kml files sent by FAA. You can download the latest version of Google Earth here. Only the .kml files that correspond to the applicable surfaces should be used. These files show the location of each identified obstruction overlaid on an aerial photo. Airports can use this tool to best identify and plan their obstruction maintenance activities. It should be noted that the .kml files sent by FAA are preset to show an oblique perspective of the obstructions, which may appear to distort the obstructions’ actual locations. To show the obstructions in an overhead view, use the navigation tools in the top right of the Google Earth screen. The oblique angle can be adjusted using the arrows circled in the image to the right.

Share This